Problem No 11.1
Prove that the Celsius anf Fahrenheit scales have the same reading at -40º ?
Datas ºC       = -40
ºF       = -40
To prove     ºC = ºF
We know from the relation of Celsius and Fahrenheit scale that,
ºC = [(ºC x 9/5 ) + 32 ] ºF
putting values we get
-40ºC = [(-40º x9/5) +32] ºF
-40ºC = [(-72+32]ºF
-40ºC = -40 ºF
This -40º is the point where both scales have the same readings.
Problem No 11.2
A test tube filled with air is sealed off S.T.P. It is then heated to 300 ºC.What then is the air 
pressure in the tube in Newton per square meter, in pascles, and in atmosphere? 
Given 1 atmosphere = 76 cm Hg    =
= 1.01 x Pa.
Datas Initial Temperature   =  T1       = 0ºC 273 K
Initial Tpressure       =  P1      = 1 atm
Final Temperature    =  T2         = 300ºC 573 K
Initial Volume        =    V
Final Pressure      =     P2   = ?
From the general gas equation
P1V1 / T1  = P2V2 / T2
Since V1 = V2 = V
P1 / T1     = P2  / T2
P1T2 / T1  = P2  
       P2  = 1 x 573
273
        P2    = 2.098901   atm        Ans
        P2    =    2.12 x Pascals Ans
        P2  =
   2.12 x  
  N/m² Ans
Problem No 11.3
Air at 27ºC and atmosphere pressure is suddenly compressed to one twentieth of its original
 volume and pressure of 30 atmosphere. What is the temperature of the gas? 
Datas
Initial temperature of the gas= T1   =  27 ºC     = 300 K
Final  temperature of the gas= T2   =  ?
Initial Pressure                   =     P1  = 1   atm
Final Pressure                   =     P2  = 30 atms
Initial Volume                    =     V1  = V
Final Volume                    =     V2  = V/20
 P1 V1 / T1  =  P2 V2 / T2
T2    = P2 V2  T1
P1 V1
T2    = 30 x V/20 x 300
1 x V
T2    = 30 x300 xV T2    = 9000
1 x 20 x V 20
T2    = 450 - 273 = 177 °C    Ans
Problem No 11.4
An electric heater supplies 1800 W of power in the form of heat to a tank of water. How 
long will it take to heat the 200 kg of water in the tank from 10ºC to 70ºC? Assume heat losses to 
surrounding to be negligible. Specific heat of water is 4200 j/kg K.
Datas Power of heater  = P =1800 W = 1800 J/s
Mass of water    = m =200kg
           Initial temperature   = T1=10°C
           Final temperature   = T2=70°C
     Specific heat of water   = C=4200 j/kg K
Time required   = h = ?
Energy = Power x Time
Q = Pt
    Q = mC    T
Q = 200kg X 4200j/kg °C x (70°C - 10°C)
Q = 840000 J x 60
Q =50400000 J
t = Q / P
t  = 50400000
1800
t  = 28000 sec
t  = 7.777778 hrs
Problem No 11.5
A copper calorimeter has a water equivalent of 5.9g. That is in heat exchanges, the
 calorimeter behaves like 5.9g of water, It contain 40g of oil at 5.0ºC, when 100g of lead at 30ºC
 is added to this, The final temperature is 48.0C. What is the specific heat capacity of oil?
Specific heat  of lead =128.1 j/kg ºC.
Datas Mass of water in  calorimeter   =  m1  = 5.9g = 0.0059kg
Mass of oil             =   m2  = 40g  = 0.04kg
Mass of lead          =   m3  = 100g= 0.1 kg
             Initial temperature of Calorimeter =   T1   = 50°C= 323 K
             Initial temperature of oil              =   T2   = 50°C= 323 K
             Initial temperature of oil              =   T3   = 30°C= 313 K
             Specific heat of calorimeter      =   C1  = 4200 J/kg K
             Specific heat of oil                    =   C2  =     ?
             Specific heat of Lead                =   C3  = 128 J/kg K
             Final temperature of the mixture =   T    = 48°C = 48+273  = 321 K
According to the law of heat exchange
Heat lost by the hot body = Heat gained by the cold body
     m1C1(T1 - T) + m2C2(T2 -T)      = m3C3(T -T3)
             m2C2(T2 -T)  = m3C3(T -T3) -m1C1(T1 - T)
C2 = m3C3 (T - T3) - m1 C1 (T1  -T)
m2 (T2 -T)
C2 = 0.1 x 128 x (321-313) - 0.0059 x 4200 x (323 -321)
0.04 x (323 -321)
C2 = 230.4 - 49.56
0.08
C2 =2260.5 J/kg K Ans
Problem No 11.6
One meter steel bar is correct at 0ºC and another at 2.5ºC. What is the difference between 
their lengths at 20ºC?
Datas Initial length of first steel bar              = L1   = 1 m
Initial Temperature of first steel bar     = T1   = 0°C
Final Temperature of first steel bar     = T2   = 20°C
Initial length of second steel bar         = L2   = 1 m
Initial Temperature of second steel bar = T3   = 2.5°C
Final Temperature of second steel bar =
T2   = 20°C
Coefficient
Final length of first steel bar              = L3   = ?
Final length of second steel bar         = L4   = ?
Length difference of both Bars         =L4 - L3  = ?
Lf = Li (1 +        T )
L3 = L1( 1+         T )   = L1[ (1+     (T2 - T1)]
L3 = 1[1+                      x (20°K - 0°K)
L3    =1.00024 m  
L4 = L2( 1+         T )   = L2[ (1+     (T2 - T3)]
L4 = 1[1+                      x (20°K - 2.5°K)
L4 = 1[1+0.00021
L4 = 1.00021m
Length difference of both Bars         =L4 - L3  = ?
Length difference of both Bars         =L4 - L3  = 1.00024m - 1.00021m
Length difference of both Bars         =L4 - L3  = 0.00003m = .003cm   Ans
Problem No 11.7
What is the change in internal energy of 200g of Nitrogen as it is heated from 10°Cto 30°C
at constant Volume? For Nitrogen Cv = 0.177 Cal/ g°C
Datas Mass of Nitrogen = m  = 200g  = 0.2 kg
Initial temperature of N2       = T1   = 10°C  = 283 K
Final  temperature of N2        = T2   = 30°C  = 303 K
Cv for N2 = 0.177 cal/g °C
Change in the internal energy       =     U = ?
             U = m Cv    T
             U = m Cv    T = 200 x 0.177 x (30 -10) cal
= 35.4 x 20 Cal
= 708 cal = 708 Cal x 4.185 j / Cal
= 2960 J Ans
Problem No 11.8
      Five grams of helium gas is heated from -30 ˚C to 20 ˚C. Find the change in its internal energy 
and the work done by the gas if heating occurs at (a) constant volume, (b) constant pressure. For
He Cv =0.75 cal/(g)(˚C) and Cp = 1.25 cal/(g)(˚C).
datas mass of He m = 5 gm  = 0.005 kg
Molecular mass M = 4 kg/kmol
No of kilomoles n = .005kg      = 0.00125 kmol
4kg/kmol.K
T1  = -30 ˚C   = 243 K
T2 = 20 ˚C   = 293 K
∆T = 50 K 
Cv  = 0.75 Cal/kmol K   = 12540 j/kmol K
Cp = 1.25 Cal/kmol K   = 20900 j/kmol K
∆U =  ?  At constant Volume & constant pressure
∆W =  ?  At constant Volume & constant pressure
(a)
∆U =  ?  At constant Volume i.e Cv
∆U = nCv∆T
∆U = .00125kmol x 12540j/kmol K x 50 K
∆U = 783.75 joul. Ans  
∆W =  ?  At constant Volume i.e Cv
∆W = P∆V
∆W = P x 0
∆W = 0 Ans
(b)
∆U =  ?  At constant pressure i.e Cp
∆U = will be same because ∆T is same i.e there is no temperature difference
∆U = 783.75 joul. Ans  
∆W =  ?  At constant pressure i.e Cp
∆W = P∆V  = nR∆T As PV =nRT
∆W = nR∆T
∆W = .00125kmol x (Cp-Cv) x 50 K
Cp - Cv  = 8360
∆W = .00125kmol x 8360j/kmol K x 50 K
∆W = 522.5 joul. Ans
Problem No 11.9
     Nitrogen gas is adiabatically compressed in such a way that its temperature is to rise from 20 ˚C to
500 ˚C. To what fraction of its original volume must the gas be compressed?  
Initial temperature of N2   T1 = 20 ˚C   = 293 K
final temperature of N2   T2 = 500 ˚C   = 773 K
Initial Volume V1 = V
V2 / V1 =  ?
Heat supplied ∆Q = 0 Because gas is adiabatically compressed
r-1       .        r-1
T1 V1         = T2 V2 
we know    r  = Cp/Cv r = gamma
for Nitrogen  r = 1.4
After eliminating the T from eq 11.28 by using the ideal gas equation…….and 
using the simplified equation from example No 11.10. we have,  r-1
1.4-1         (V2 /V1 )   = T1 / T2  
(V2 /V1 )     = T1 / T2  
0.4          .
(V2 /V1 )     = 293 K / 773 K
            1/.4
(V2 /V1 )     = (294 K / 773 K)
.                               2.5
(V2 /V1 )     = 0.379043 )
(V2 /V1 )     = .38 x .38 x .38 As √.38    = 0.6164
(V2 /V1 )     = 0.143673 x √.38
(V2 /V1 )     = 0.143673 x .6164
(V2 /V1 )     = 0.08856 Ans
Problem No 11.10
 In a high pressure steam turbine engine, the steam is heated to 600 ˚C and exhausted at about 90 ˚C.
What is the highest possible efficiency of any engine that operates between these two temperatures?
Initial temperature   T1 = 600 ˚C   = 873
final temperature   T2 = 90 ˚C   = 363
∆T = 510 K
 Efficiency of engine  η = 1-T2 /T1
 Efficiency of engine  η = 1- 363K/873K
 Efficiency of engine  η = 0.584192
 Efficiency of engine  η = 58.41924 % Ans  
Problem No 11.11
       Temperature diference between the surface water and the bottom water in manicher lake might be
5 ˚C.Assuming the surface water to be at 20 ˚C, what is the highest possible efficiency a steam engine
could have if it operates between these two temperatures?
Temperature of top     T2 = 15 ˚C   = 288 K
Temperature of bottmT1   = 20 ˚C   = 293 K
Difference of temp ∆ T = 5 ˚C   = 5 K
Efficiency of Carnot Engine  = η  = 1- T2 / T1
η  = 1- 293 K / 278 K  = 1 - 0.982935
η  = 0.017065
η  = 1.706485 %   Ans.
Problem No 11.12
      A Carnot engine whose low temperature reservoir is at 7˚C has an efficiency of 40%. It is desired to
increase the efficiency to 50%. By how many degrees must that temperature of the high temperature
 reservoir increase?
Initial temperature   T1 = ? ˚C   = ? K
final temperature   T2 = 7 ˚C   = 280 K
η1  = 40%  =.4
η2  = 50%  =.5
 Efficiency of engine  η = 1-T2 /T1
T2 /T1  = 1-η
T2  = (1-η)T1
  (i)  When Efficiency is 40%
T2/T1  = (1-η1)
280K/T1   = 1-.4
280K/T1   = 0.6
T1 /280  = 1/.6
T1  = 1/.6 x 280K
T1  = 1.667 x 280K
T1  = 466.7 K
  (ii)  When Efficiency is 50%
T2/T1  = (1-η2)
280K/T1   = 1-.5
280K/T1   = 0.5
T1 /280  = 1/.5
T1  = 1/.5 x 280K
T1  = 2 x 280K
T1  = 560 K
Required increase in temperature is= 560K - 467K   = 93.33 K
Problem No 11.13
       What is the change in the entropy of 30g of water at 0˚C as it is changed into ice at  0˚C.
Heat of fusion for ice is; Hf = 336000 J/kg
Temperature of ice = T = 0 ˚C   = 273 kg
mass of water = m = 30 gm  = 0.03 kg
Change in entropy ∆S = ?
Heat of fusion for ice = Hf = 3E+05 J/kg
∆Q = mHf
∆Q = 10080 J
Change in entropy ∆S = ∆Q/T
Change in entropy ∆S = 10080J/273K
Change in entropy ∆S = 36.92 J/K Ans
Problem No 11.9_Old Book
An airconditioner absorbs heat from its cooling coils at 10°C and expels heat to the outside at
40°C. Calculate the maximum coefficient of performance of the air conditioner.
Datas Low temperature   = T2    = 10°C    = 273 +10 = 283 K
High temperature   = T1    = 40°C    = 273 +40 = 313 K
E = _T2_
T1 - T2
E = 283
313 - 283
E = 283/30  
E = 9.433333